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Netherlands 

Received 24 September 1990 

Abstract. We enumerate a special clws of trees, called externally labelled trea. 
This is done by formulating a recursion relation in two variable, the number of 
internal Lines, i ,  and the number of e x t e d  lines, n, for these tress, and subsequently 
solving it. The solutbn is discussed in detail. In particular we consider the case 
where n becomes large. while summing on i. The extemdy labelled trees considered 
correspond to the F e y m n  diagrams one encounters in perturbation theolies for 
fundamental forces, involving one type of partide that self-interacts. 

1. Introduction and problem 

We begin by defining the notion of an externally labelled tree. An externally labelled 
tree is a connected graph without cycles, of which the external branches are labelled. 
Here, an external branch is understood to be a line arriving in a point in which 
no other lines arrive. The lines in the graph which are not external will be called 
‘internal branches’. Internal and external branches are connected at  given points, 
called vertices. The minimum number of branches that can come together in a vertex is 
three, the maximum number is m (2 3), an adjustable integer valued parameter. Both 
the internal branches and the vertices are unlabelled. External branches connected to 
the same vertex can be interchanged without producing a different externally labelled 
tree. We point out that  for a given externally labelled tree, letting NI denote the 
number of vertices where k branches (k = 3 , .  . . ,m) come together, n the number of 
external branches, and i the number of internal ones, one has 

m 

x N , = i + l  
k 3  

and 

The problem we shall address in this paper is to calculate how many different externally 
labelled trees there exist for given, but general, m and n. The number of internal 
branches i at  given, fixed, m and n is allowed to vary. To our knowledge, this question 
of enumeration has not been studied before in the literature, for general m. The caes  
m = 3 and m = 4 have already received some attention from other authors [1,2]. For 
some interesiing general texts on graph theory see, e.g., [3,4]. 
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The problem of enumerating externally labelled trees is of some physical relevance 
from the point of view of high energy physics. This is because externally labelled trees 
as defined above are just the Feynman diagrams one encounters in a perturbation 
theory for fundamental forces, involving only one type of particle that self-interacts, 
There, in order to calculate a scattering process of n of these particles, one needs 
to have all the diagrams with n external branches. It is thus important to know 
how many of them exist. The parameter m introduced above, controls the degree of 
seii-interaction, and basicaiiy determines which theory one is studying. For exampie, 
m = 3 corresponds to O3 theory, m = 4 to Yang-Mills theory, whereas the limit 
m - 03 corresponds to sc-called linearized gravitation. In fact, these three cases are 
the most important ones from the point of view of high energy physics, since theories 
corresponding to other values of m are as yet unknown. Therefore we shall pay special 
attention to  them in the following. In practical calculations performed up till now, n 
nas aiways been iess than 10. Tie record for the largest number of diagrams caicuiated 
presently lies at  34 300, being the case m = 4 and n = 8 [5]. 

The outline of the paper is as follows. We first formulate recursion relations, ex- 
pressing the number ofexternally labelled trees with n external and i internal branches 
in the number of externally labelled trees with lesser branches. Then these recursion 
relations are solved, leading to a formal solution of the problem stated above. The 
solution is subsequently studied in more detail. In particular, we address the question 
as to how the number of externally labelled trees grows with n, at fixed m, as n b e  
comes large, thus indicating the impossible task one faces when trying to  calculate all 
Feynman diagrams for larger n. 

1 ~~ 

2; En"merat.iQn 

1.1. Recursion relations and solution 

Let Dim) denote the number of externally labelled trees, with n external 
branches, there exist when allowing 3 ,4 , .  . . , m-point vertices to  be present. With 
D,$)(N3,, , , , N,) denoting the number of these trees with i internal lines and ezactly 
N3 3-point vertices, N4 4-point vertices, up to and inciuding N, m-point vertices, we 
can write 

For given n, the right-hand side of (2.1) converges, since DAY only differs from zero 
if conditions (1.1) and (1.2) are fulfilled. It is easy to write down a recursion relation 
for DL;'(N3,. . . , N,,,), valid for n 2 4 and i 2 1: 

D,$)(N3,. . . , N,) = (TI + i - '2)D~?)1,i-,(N3 - 1,N4,.  . . , N , )  
1 

m-1 

+ c(N, + l)DLy\, i(Ns,.  . . , N ,  + l ,Nh+l - 1,. . . , N , ) .  (2.2) 
k=3 , 

This is so because an externally labelled tree with n extern71 and i internal branches 
can be formed in two different ways. Namely, by taking an externally labelled tree 
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with (n - 1) external and (i - 1) internal branches, then choosing a point on any one 
of the already existing internal or external branches and attaching the new external 
branch to it. This creates a new 3-vertex (the first term on the right-hand side of 
(2.2)). Or by taking an externally labelled tree with (n - 1) external and i internal 
branches, attaching the new external branch to an already existing vertex (the second 
term on the right-hand side of (2.2)). In the procedure described here, evey  externally 
labelled tree one can think of can be constructed. Also it is easy to convince oneself 
Lnaz ihere is no doubie counting. T i i s  is because, due io ihe iaci ihai  vie exiernai 
branches are labelled, the procedure itself has a tree structure. One can see this 
remarking that for a given externally labelled tree one can find its predecessor by 
just removing the external branch with the highest number, so that its predecessor is 
unique. Therefore the solution of (2.2) is indeed what we are looking for. However, in 
order for D$' to be uniquely determined for all n and i, the recursion relation (2.2) 
must be suppiemenied with boundary conditions. -Wk have 

I L  ~I 

DiT)(l,O, . . . ,  O ) =  1 

D$y) (N3 , .  . . , N,) = 0 otherwise 

expressing that there is only one externaiiy iabeiied tree having three externai branches 
and no internal ones, and, for j = 3 , .  , . , m 

D$T)(O,. . . ,O, N j  = 1,0,. . . ,0) = 1 (2.4) 

expressing that a j-vertex is unique; The solution for D~?)(N~~. ~. , N,) the" reads 

as can be verified by a direct substitution in (2.2). It is easy to check that the boundary 
conditions (2.3j and (2.4) are indeed fuifiiied. Substituting ( Z 5 j  in (2.ij, ihe sum on 
i can be performed, yielding 

This, then, is the formal solution to the problem. However, since it still involves 
(m - 2) sums, it is not very transparent what it implies. In the following we shall 
therefore study some aspects of i t  more closely for some special cases. In particular, 
we shall study the growth factor 2:('"), defined as 

(2.7) 

and show that it is finite for all n. The implications of the finiteness of 5("') for Dim) 
itself will be discussed later. 
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2.2. The case m = 3 

For m = 3, the sum in (2.6) in fact only consists of one non-zero term, and we find 

M J A M Brvmmelhuis and H Kuijf 

0:) = (2n - 5)!! all n 2 3 

in accordance with [l]. From this one obtains 

s(3) = 2 .  

2.3. The case m = 4 
Performing the sum on N3 in (2.6) we arrive at  

int[(n/2)-1] c (2n - N4 - 4)! 
2n-Z-2N*(n - 2N4 - 2)!6N4N4! 

DA4) = n 2 3 (2.10) 
N,=O 

where 'int' stands for 'integer part of'. Let us write N4 = a n ,  thus introducing the 
new variable cy. Then we have 

[(2 - a ) n  - 4]! 
[( 1 - 2a)n - 2]! 6""(an)! D p  = 2(1-2u)n-2 

U 

(2.11) 

where 01 now takes the values O:(l/n); .  . . ;(l,/n)int[(n/2! - 11. In order to evaluate 
this sum asymptotically, we use Stirling's formula in the form 

( a i  + b)! Y &&(an)""+* e-"" (2.12) 

for the factorials in the summand, and note that ( l /n )  xu -+ si" d a  as n + CO. We 
then obtain 

with 

(2.13) 

(2.14) 

(2.15) 

By considering lng(a) one easily shows that g ( a )  has a maximum on [0, i] for a = 
a. = &(7-3&), the value at  the maximum beingg(a,) = (3/11e)(4+3&). Taylor 
expanding the integrand in (2.13) around eo and then introducing a new variable I 
according to a = a. + z / f i  we find 

(2.16) 
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Now 

1 1 + - = 4 i -  4 13 (2.17) 
& =--- 

~~ ,Yo 2-01, 1-2,Yo 

so that one ultimately gets 

0;) Y 1 so [g(ao) "In-' = (0.16285.. .)[0.92265.. .n]"-'. (2.18) 
e J 

The growth factor as defined in (2.7) is given by 

E(4) = eg(ao)  = A ( 4  + 3&) = 2.5080416.. . . (2.19) 

2.4. The general case 

Finding an asymptotic expression for Dim) as n - 00 in this case, would amount to 
starting with (2.6), then performing, e.g., the sum on N3 to eliminate the Kronecker 
delta, and subsequently applying the method of steepest descent on an (m - 3)-fold 
integral.. This is a procedure that is very similar to the one sketched above for the case 
m = 4.  However, as it turns out, i t  is already reasonably difficult to find where the 
maximum used in the method of steepest descent is located. Therefore, we shall a t  
first content ourselves with calculating E("), since here a knowledge of the maximum 
itself suffices, as we have already seen in the case m = 4. To do so we return to (2.5), 
which we rewrite as 

Obviously, what we are looking for are the values of i and N 3 , .  . . , N, which maximize 
( n + i -  I)!/IITZ3[((k- I)!)N"Nk!], in aspace restricted by conditions (1.1) and (1.2). 
With this in mind we write 

i = yn Nk = pkn (2.21) 

so that ,  using (2.12), we arrive at 

Here 

(2.22) 

(2.23) 

while the expression for'f (y, { P I ) )  will not be given, since it is not important for our 
purposes. Thus, we must maximize g(y, I&}), or what is easier hut amounts to the 
same, Ing(y, tok}), subject to the conditions 

m 

CPj = 7 
j =3 

(2.24a) 

m 

(2.246) 
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following from (1.1) and (1.2) when using the scaling (2.21) and taking n + m at 
fixed 7 and p k .  Therefore we consider 

M J A M Brummelhuis and H Kuijf 

where X and p are Lagrange multipliers, and we shall want to extremize this expression. 
Solving 

one finds 

e,4+pk-l 

@ =  

(2.26) 

(2.27~1) 

(2.276) 

which express y o  and p,", the values at  the extremum, in terms of X and p.  The 
values of X and p are themselves obtained by substituting (2.27a) and (2.276) back 
into (2.24a) and (2.246), solving the resulting equations for X and p. In particular, we 
find that 

0 - A+2p-1 - 1 7 - e  

( 2 . 2 8 ~ )  

(2.286) 

implicitly giving the values of p and 7'. The growth factor E("') is found to be given 
by 

where the different equalities can be established using the definition (2.7) of E("') and 
formulas (2.22)-(2.286). It  is directly determined by that solution of (2.28a) for which 
e" E [0,1]. For example, we find 

E(3) = 2 

2(4) = 5 ( 4  + 3&) = 2.508. ' .  

;(5) - = ( 2 2 -  1 - - ;:)-' with I = (5 + - (5 + &%)-I/. - 1 (2.30) 

= 2.578. . .  

= 2.588. 
1 

21112- 1 
z:(m) = 
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Also, using (2.28a) and (2.29), it is not hard to show that E(") is approached as 

(2.31) 

The existence of E("') implies that asymptotically, i.e., for n - w 

D;'") N Hm(n)(E(m))nn! (2.32) 

where H,(n) has the property that limn-- H,,,(n+ l)/H,,,(n) = 1. Therefore we see 
that the number of externally labelled trees for fixed n and n + M grows factorially 
fast. However, we can even do better than this: we can find the n-dependence of 
H,,,(n) quite easily. The only thing one has to do is to follow the procedure outlined 
at the beginning of this section for calculating Dim,"' asymptotically, keeping track of 
powers of n. We stress that it is not necessary to do the whole actual calculation itself. 
I t  is not hard to convince oneself that one finds 

D i m )  (2.33) 

as n + CO, for all m. Therefore we obtain 

(2.34) 

where C,,, is an m-dependent constant. It is amusing to remark here that the number 
of ways in which one can join n labelled points to form a tree (also allowing only 
two lines to arrive in a given labelled point) is given exactly by n"-' [GI. The result 
(2.34) is consistent with (2.32). One may check that the results (2.8) and (2.18) for 
the cases m = 3 and m = 4, respectively, are indeed of the form (2.34). Also, there, 
the constants C, and C, can be read off. The corrections to (2.34) are of relative 
order l /n.  Because of this one can actually calculate Si'") E D~"') /nD~~),  up to first 
order in l / n  using (2.34), since the corrections to (2.34) only contribute to second and 
higher orders in the large-n expansion of EL",. We find 

(2.35) 

Thus, the coefficient of the 1/n term in the expansion of in powers of 1/n 
does not depend on m. This, however, is no longer true for the higher-order terms. 
For the case m = 3 there are in fact no higher-order terms, as can be seen from the 
exact result in (2.8) valid for all n > 3. But a numerical evaluation of &,'")/E("') for 
the cases m = 4 and m = M yields that then there are indeed higher-order corrections. 
They are equal t o  k,,,/n2 + lm/n3 + ' ., say, and we find numerically 

k4 = 0.0159860861860.~~ r4 =0.05227131.. .  
(2.36) 

k, = 0.0160955983798... I, = 0.056334 59. .  . . 

Because these coefficients are so small, one might expect that the approximation to 
, m  =A ) one obtains when neglecting the terms represented by the dots in (2.35), is 
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already quite good for fairly small n. We have for m = 4 and m = 00 explicitly 
verified that this is indeed the case. 

Finally we remark that the case m = 00 can in principle be tackled more directly. 
Here, namely, one can immediately write down a recursion relation for En(i),  the 
number of externally labelled trees with n external and i internal branches, since all 
types of vertices are allowed. It reads 

E,(i) = (n+ i - 2)En-l(i - 1) + (i + l)En-l(i) 

with boundary conditions 

M J A M Brvmmelhuis and H KuijJ 

n 2 4 i 2 1 (2.37) 

E3(i) = En(0) = 1 n 2 3 .  (2.38) 

The first term on the right-hand side of (2.37) originates from creating a new vertex 
in an externally labelled tree with n - 1 external and i - 1 internal branches, and 
attaching the nth external branch to it. The second term comes from adding the 
new external branch to an already existing vertex in an externally labelled tree with 
n - 1 external and i internal branches. Unfortunately, we have not been able to solve 
(2.37) witliboundary conditions (2.38) directly. However, from the point of view of a 
numerical eva1uation;it is much easier to obtain values for dW) = 2;:; E,(i) using 
(2.37) than using (2.2). Also, starting from (2.37), one may show that 

(2.39) 

This implies that  as n - 00 the growth factor S:(m) is directly determined by the 
position of the maximum of E,(;) as a function of i. Since 0 < (i)n-l/n < 1 one 
immediately sees that E:(-) E (1,3), consistent with (2.30). 
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